Definition The MGF of RV X is m(t)=E(etX)=∫−∞∞etxfX(x)dx Well Defined when m(t) is finite ∀t<ϵ,ϵ>0 Properties Linearity to multiply: Y=a1X1+⋯+anXn⟹mY(t)=mX1(a1t)×⋯×mXn(ant)=Πi=1nmXi(ait) IID X1,X2,…,Xn,Y=X1+⋯+Xn⟹mY(t)=(mX(t))n Calculating Moments E(Xk)=mk(0)=dtkdkm(t)∣t=0