Let M,M′ be DFSA where: M=(Q,Σ,δ,s,F) M′=(Q′,Σ,δ′,s′,F′) Want M∩=(Q∩,Σ,δ∩,s∩,F∩ s.t L(M∩)=L(M)∩L(M′) Where: Q∩=Q×Q′={(q,q′)∣q∈Q,q′∈Q′} (State Space Cartesian Product) δ∩((q,q′),c)=(δ(q,c),δ(q′,c)) s∩=(s,s′) F∩=F×F′ Properties M∩ is a DFSA Example Cartesian Product Construction Example