Let a,b∈R Let a<b If f is cont on [a,b] Then ∃c∈(a,b) s.t f(c)=b−a1∫abf(x)dx Or ∃c∈(a,b) s.t b−aF(b)−F(a)=f(c) Kathleen likes this form: ∃c∈[a,b] s.t ∫abf(x)dx=f(c)(b−a) Alternate Area Theorem If f:R→R is Continuous If R is Simple Region Then, there is a point (x0,y0)∈R s.t ∫∫Rf(x,y)dA=f(x0,y0)Area(R) Intuition