i∑(Xi−μ)2=i∑(Xi−X)2+n(X−μ)2
Proof
- ∑i(xi−μ)2=∑i(xi−x+x−μ)2
- =∑i(x−μ)2+2∑i(xi−x)(x−μ)
- Note that with respect to i, xi is changing, x,μ are constants
- =∑i(xi−x)2+n(x−μ)2+2(x−μ)∑i(xi−x)
- Note that ∑i(xi−x)=0
- =∑i(xi−x)2+n(x−μ)2
- Re-arrange to get ∑i(xi−x)2=∑i(xi−μ)2−n(x−μ)2
- ⟹E[∑i(xi−x)2]=E[∑i(xi−μ)2]−nE[(x−μ)2]
- ⟹E[∑i(xi−x)2]=∑iE[(xi−μ)2]−nE[(x−μ)2]
- ⟹E[∑i(xi−x)2]=V[xi]−nV[x]
- ⟹E[∑i(xi−x)2]=(n−1)(σ2)
Example