Theorem
- For X1β,β¦,XnββΌiidβN(ΞΌ,Ο2)
- U and V are two different linear combinations of Xiβs
- cov[U,V]=0βΊUβ₯V
Linear Combinations
- Say i=1
- Then, U=x=n1βx1β+n1βx2β+β―+n1βxnβ
- Then, V=xiββx=x1ββn1βx1β+x2ββn1βx2β+β―+xnββn1βxnβ
- Then, we get cov[x,xiββx]
- cov[x,xiβ]βcov[x,x]
- n1βcov[x1β,x1β]+n1βcov[x2β,x1β]+β―βV[x]
- =n1βV[xiβ]βV[x]
- =n1βΟ2βnΟ2β=0
Therefore, Xβ₯XiββX,Β forΒ i=1,2,β¦,n