Theorem Df(x)v=∇f⋅v Proof With f:Rk→R With v∈Rk The function h(t)=f(x+tv)=h(t)=f(c(t)) where c(t)=x+tv Then, Df(x)v=dxdf(x+tv)∣t=0 =D(f∘c) =∇f(c(t))c′(t) =∇f(c(t))⋅v =∇f⋅v