∫−∞∞e−x2dx=π Proof ∫−∞∞e−x2dx∫−∞∞e−y2dx=∫−∞∞e−x2−y2dx We convert to polar coordinates. So, (x,y)=(rcosθ,rsinθ) Note that the jacobian ∣∂(r,θ)∂(x,y)∣=r ⟹∫−∞∞∫−∞∞e−x2−y2dxdy=∫02π∫0∞e−1[(rsinθ)2+(rcosθ)2]dxdy =∫02π∫0∞e−r2dxdy=π