Definition
- For RV X with Mean μx=E(X) and Variance σX2=V(X)
- For RV Y with Mean μY=E(Y) and Variance σY2=V(Y)
- The covariance of X and Y defined as Cov(X,Y)=E[(X−μX)(Y−μY)]
Properties
- Cov(aX,bY)=abCov(X,Y)
- Cov(X,X)=V(X)
- Cov(X,Y)=E(XY)−μXμY
- If X⊥Y⟹Cov(X,Y)=0
- Variance of linear combinations: V(X+Y)=V(X)+V(Y)+2Cov(X,Y)
- Linearity of covariances Cov(Σi=1naiXi,Σj=1mbjYj)=Σi=1nΣj=1maibjCov(Xi,Yj)